Self-assembly of like-charged nanoparticles into microscopic crystals.

نویسندگان

  • Pramod P Pillai
  • Bartlomiej Kowalczyk
  • Bartosz A Grzybowski
چکیده

Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can "choose" whether to crystallize with like-charged or oppositely charged particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice.

Self-assembly of charged, equally sized metal nanoparticles of two types (gold and silver) leads to the formation of large, sphalerite (diamond-like) crystals, in which each nanoparticle has four oppositely charged neighbors. Formation of these non-close-packed structures is a consequence of electrostatic effects specific to the nanoscale, where the thickness of the screening layer is commensur...

متن کامل

Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals

We demonstrate fabrication of novel magnetically controllable photonic crystals formed through the self-assembly of highly charged, monodisperse superparamagnetic colloidal spheres. These superparamagnetic monodisperse charged polystyrene particles containing nanoscale iron oxide nanoparticles were synthesized through emulsion polymerization. They self-assemble into crystalline colloidal arrays...

متن کامل

When and Why Like-Sized, Oppositely Charged Particles Assemble into Diamond-like Crystals.

Like-sized, oppositely charged nanoparticles are known to assemble into large crystals with diamond-like (ZnS) ordering, in sharp contrast to analogous molecular ions and micrometer-scale colloids, which invariably favor more closely packed structures (NaCl or CsCl). Here, we show that these experimental observations can be understood as a consequence of ionic screening and the slight asymmetry...

متن کامل

Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins

Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary s...

متن کامل

Towards Reconfigurable Optical Metamaterials: Colloidal Nanoparticle Self-Assembly and Self-Alignment in Liquid Crystals

We explore the nanoscale colloidal self-assembly and self-alignment in liquid crystals. We use model particles with controlled shapes and sizes, including quantum dots and rods and metal nanoparticles in the form of spheres, rods, and polygonal platelets. To study these composites on the scales ranging from nanometers to millimeters and to motivate their use in metamaterial fabrication, we util...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016